Abstract

The antiregular connected graph on r vertices is defined as the connected graph whose vertex degrees take the values of r−1 distinct positive integers. We explore the spectrum of its adjacency matrix and show common properties with those of connected threshold graphs, having an equitable partition with a minimal number r of parts. Structural and combinatorial properties can be deduced for related classes of graphs and in particular for the minimal configurations in the class of singular graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.