Abstract

Consider a square matrix with independent and identically distributed entries of zero mean and unit variance. It is well known that if the entries have a finite fourth moment, then, in high dimension, with high probability, the spectral radius is close to the square root of the dimension. We conjecture that this holds true under the sole assumption of zero mean and unit variance, in other words that there are no outliers in the circular law. In this work we establish the conjecture in the case of symmetrically distributed entries with a finite moment of order larger than two. The proof uses the method of moments combined with a novel truncation technique for cycle weights that might be of independent interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.