Abstract
This paper is concerned with extensions of the classical Mar\v{c}enko-Pastur law to time series. Specifically, $p$-dimensional linear processes are considered which are built from innovation vectors with independent, identically distributed (real- or complex-valued) entries possessing zero mean, unit variance and finite fourth moments. The coefficient matrices of the linear process are assumed to be simultaneously diagonalizable. In this setting, the limiting behavior of the empirical spectral distribution of both sample covariance and symmetrized sample autocovariance matrices is determined in the high-dimensional setting $p/n\to c\in (0,\infty)$ for which dimension $p$ and sample size $n$ diverge to infinity at the same rate. The results extend existing contributions available in the literature for the covariance case and are one of the first of their kind for the autocovariance case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.