Abstract

In this contribution, we summarize recent results [8, 9] on the stability analysis of periodicwavetrains for the sine-Gordon and general nonlinearKlein-Gordon equations. Stability is considered both from the point of view of spectral analysis of the linearized problem and from the point of view of the formal modulation theory of Whitham [12]. The connection between these two approaches is made through a modulational instability index [9], which arises from a detailed analysis of the Floquet spectrum of the linearized perturbation equation around the wave near the origin. We analyze waves of both subluminal and superluminal propagation velocities, as well as waves of both librational and rotational types. Our general results imply in particular that for the sine-Gordon case only subluminal rotationalwaves are spectrally stable. Our proof of this fact corrects a frequently cited one given by Scott [11].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.