Abstract
The coupled sine-Gordon (SG) equations and the coupled Klein-Gordon (KG) equations play an important role in scientific fields, such as nonlinear optics, solid state physics, quantum mechanics. As their energies are conservative, it is of importance to develop energy preserving finite difference method (EP-FDM) for these systems of nonlinear wave equations. However, the energy preserving finite difference methods (EP-FDMs) for one-dimensional single sine-Gordon equation and one-dimensional single Klein-Gordon equation, can not directly be generalized to solve the systems of coupled SG or coupled KG equations, and the theoretical analysis technique used for 1D single SG equation or for 1D single KG equation is not suitable for the analysis of high dimensional problems. In this paper, we develop and analyze two kinds of energy preserving FDMs for the systems of coupled SG equations or coupled KG equations in two dimensions. One proposed scheme is a two-level scheme and the other is a three-level scheme. We prove the schemes to satisfy the energy conservations in the discrete forms. By using the fixed point theorem, it is shown that they are solvable. Also, it is further proved that they have the second order convergence rate in both time and space steps. Numerical tests show the performance of the methods and confirm the theoretical findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.