Abstract

The problem of the spatial localization of free electrons in 4H-SiC metal—oxide—semiconductor field effect transistors (MOSFETS) with an accumulation- and inversion-type n channel is theoretically analyzed. The analysis demonstrates that, in optimally designed accumulation transistors (ACCUFETs), the average distance from the surface, at which free electrons are localized, may be an order of magnitude larger than that in inversion MOSFETs. This can make 4H-SiC ACCUFETs advantageous as regards the effective carrier mobility in a conducting channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.