Abstract
Este artículo presenta un estudio del tiempo-espacio fluido perfecto relativista general admitiendo varios tipos de restricciones de curvatura en los tensores de energía-momento y saca a relucir las condiciones para las cuales los fluidos del espacio-tiempo son a veces barrera fantasma y otras veces barrera de quintaesencia. La existencia de un espacio-tiempo donde los líquidos se comportan como barrera fantasma es garantizado por un ejemplo.
Highlights
In tune with Yano and Sawaki [16], Baishya and Roy Chowdhury [4] introduced and studied quasi-conformal curvature tensors in the frame of N(k, μ)-manifolds
The generalized quasi-conformal curvature tensor is defined for n dimensional manifolds as n−2
N for all X, Y, Z ∈ χ(M ), the set of all vector fields of the manifold M, where scalars a, b, c are real constants. The beauty of such curvature tensors lies on the fact that it has the flavour of (i) Riemannian curvature tensors R if the scalar triple (a, b, c) ≡ (0, 0, 0), (ii)
Summary
In tune with Yano and Sawaki [16], Baishya and Roy Chowdhury [4] introduced and studied quasi-conformal curvature tensors in the frame of N(k, μ)-manifolds. The generalized quasi-conformal curvature tensor is defined for n dimensional manifolds as n−2. N for all X, Y, Z ∈ χ(M ), the set of all vector fields of the manifold M , where scalars a, b, c are real constants. The beauty of such curvature tensors lies on the fact that it has the flavour of (i) Riemannian curvature tensors R if the scalar triple (a, b, c) ≡ (0, 0, 0),
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have