Abstract

Linear equations in Banach spaces with a distributed fractional derivative given by the Stieltjes integral and with a closed operator A in the right-hand side are considered. Unlike the previously studied classes of equations with distributed derivatives, such kinds of equations may contain a continuous and a discrete part of the integral, i.e., a standard integral of the fractional derivative with respect to its order and a linear combination of fractional derivatives with different orders. Resolving families of operators for such equations are introduced into consideration, and their properties are studied. In terms of the resolvent of the operator A, necessary and sufficient conditions are obtained for the existence of analytic resolving families of the equation under consideration. A perturbation theorem for such a class of operators is proved, and the Cauchy problem for the inhomogeneous equation with a distributed fractional derivative is studied. Abstract results are applied for the research of the unique solvability of initial boundary value problems for partial differential equations with a distributed derivative with respect to time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.