Abstract

<abstract><p>In this paper, we examined the existence and uniqueness of solutions to the second-order $ (p, q) $-difference equation with non-local boundary conditions by using the Banach fixed-point theorem. Moreover, we introduced a special case of this equation called the Euler-Cauchy-like $ (p, q) $-difference equation and provide its solution. We also studied the oscillation of solutions for this equation in $ (p, q) $-calculus and proved the $ (p, q) $-Sturm-type separation theorem and $ (p, q) $-Kneser theorem about the oscillation of solutions.</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.