Abstract
This paper addresses the efficient solution of computer aided molecular design (CAMD) problems, which have been posed as mixed-integer nonlinear programming models. The models of interest are those in which the number of linear constraints far exceeds the number of nonlinear constraints, and with most variables participating in the nonconvex terms. As a result global optimization methods are needed. A branch-and-bound algorithm (BB) is proposed that is specifically tailored to solving such problems. In a conventional BB algorithm, branching is performed on all the search variables that appear in the nonlinear terms. This translates to a large number of node traversals. To overcome this problem, we have proposed a new strategy for branching on a set of linear branching functions, which depend linearly on the search variables. This leads to a significant reduction in the dimensionality of the search space. The construction of linear underestimators for a class of functions is also presented. The CAMD problem that is considered is the design of optimal solvents to be used as cleaning agents in lithographic printing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.