Abstract
In this paper we study some questions related to the socle of a nondegenerate noncommutative Jordan algebra. First we show that elements of finite rank belong to the socle, and that every element in the socle is von Neumann regular and has finite spectrum. Next we show that for Jordan Banach algebras the socle coincides with the maximal von Neumann regular ideal. For a nondegenerate noncommutative Jordan algebra, the annihilator of its socle can be regarded as a radical which is, generally, larger than Jacobson radical. Moreover, a nondegenerate noncommutative Jordan algebra whose socle has zero annihilator is isomorphic to a subdirect sum of primitive algebras having nonzero socle (which were described in [4]). Finally, these results are specialized to the particular case of an alternative algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.