Abstract
Let $\mathcal {J}$ be a nondegenerate Jordan algebra over a commutative associative ring $\Phi$ containing $\tfrac {1}{2}$. Defining the socle $\mathcal {G}$ of $\mathcal {J}$ to be the sum of all minimal inner ideals of $\mathcal {J}$, we prove that $\mathcal {G}$ is the direct sum of simple ideals of $\mathcal {J}$. Our main result is that if $\mathcal {J}$ is prime with nonzero socle, then either (i) $\mathcal {J}$ is simple unital and satisfies DCC on principal inner ideals, (ii) $\mathcal {J}$ is isomorphic to a Jordan subalgebra $\mathcal {J}â$ of the plus algebra ${A^ + }$ of a primitive associative algebra A with nonzero socle S, and $\mathcal {J}â$ contains ${S^ + }$, or (iii) $\mathcal {J}$ is isomorphic to a Jordan subalgebra $\mathcal {J}''$ of the Jordan algebra of all symmetric elements H of a. primitive associative algebra A with nonzero socle S, and $\mathcal {J}''$ contains $H \cap S$. Conversely, any algebra of type (i), (ii), or (iii) is a prime Jordan algebra with nonzero socle. We also prove that if $\mathcal {J}$ is simple then $\mathcal {J}$ contains a completely primitive idempotent if and only if either $\mathcal {J}$ is unital and satisfies DCC on principal inner ideals or $\mathcal {J}$ is isomorphic to the Jordan algebra of symmetric elements of a $*$-simple associative algebra A with involution $*$ containing a minimal one-sided ideal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.