Abstract

In [Dichromatic link invariants, Trans. Amer. Math. Soc. 321(1) (1990) 197–229], Hoste and Kidwell investigated the skein theory of oriented dichromatic links in [Formula: see text]. They introduced a multi-variable polynomial invariant [Formula: see text]. We use special substitutions for some of the parameters of the invariant [Formula: see text] to show how to deduce invariants of finite type from [Formula: see text] using partial derivatives. Then we consider the 2-component 1-trivial dichromatic links. We study the Vassiliev invariants of the 2-component in the complement of the 1-component, which is equivalent to studying Vassiliev invariants for knots in [Formula: see text] We give combinatorial formulas for the type-zero and type-one invariants and we connect these invariants to existing invariants such as Aicardi's invariant. This provides us with a topological meaning of the first partial derivative, which is also shown to be universal as a type-one invariant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.