Abstract

Ground-coupled and air-source heat pumps (GCHPs and ASHPs, respectively) are regarded as energy efficient systems for air conditioning. Their coupling in a dual air and ground source heat pump (DSHP) can offer a further performance improvement by reducing the drawbacks of each standalone technology. In the present study, a DSHP coupled with a Flat-Panel as a horizontal ground heat exchanger (HGHE) is numerically analysed in comparison with its counterparts GCHP and ASHP, by implementing COMSOL Multiphysics to simulate heat transfer in the ground operated by the Flat-Panel. The DSHP operativity is provided by a function set to control the switching between air and ground sources, according to their temperatures and trigger thresholds. A parametric analysis has been then carried out in order to propose a preliminary guideline to size the Flat-Panel for a balance between energy saving and installation cost. The DSHP shows a higher efficiency in comparison with either ASHP or GCHP due to the switching between two sources to more favourable working temperatures, and can offer a profitable hybrid solution providing protection against frosting and size reduction of the HGHE, therefore helping to promote the penetration of heat pumps in the residential market.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.