Abstract

AbstractTo every pair of algebraic number fields with isomorphic Witt rings one can associate a number, called the minimum number of wild primes. Earlier investigations have established lower bounds for this number. In this paper an analysis is presented that expresses the minimum number of wild primes in terms of the number of wild dyadic primes. This formula not only gives immediate upper bounds, but can be considered to be an exact formula for the minimum number of wild primes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.