Abstract

Previously we defined an operation [Formula: see text] that generalizes Turaev’s cobracket for loops on a surface. We showed that, in contrast to the cobracket, this operation gives a formula for the minimum number of self-intersections of a loop in a given free homotopy class. In this paper, we consider the corresponding question for virtual strings, and conjecture that [Formula: see text] gives a formula for the minimum number of self-intersection points of a virtual string in a given virtual homotopy class. To support the conjecture, we show that [Formula: see text] gives a bound on the minimal self-intersection number of a virtual string which is stronger than a bound given by Turaev’s virtual string cobracket. We also use Turaev’s based matrices to describe a large set of strings [Formula: see text] such that [Formula: see text] gives a formula for the minimal self-intersection number [Formula: see text]. Finally, we compare the bound given by [Formula: see text] to a bound given by Turaev’s based matrix invariant [Formula: see text], and construct an example that shows the bound on the minimal self-intersection number given by [Formula: see text] is sometimes stronger than the bound [Formula: see text].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.