Abstract
ABSTRACT An estimate of the degree of CO-depletion (fD) provides information on the physical conditions occurring in the innermost and densest regions of molecular clouds. A key parameter in these studies is the size of the depletion radius, i.e. the radius within which the C-bearing species, and in particular CO, are largely frozen on to dust grains. A strong depletion state (i.e. fD > 10, as assumed in our models) is highly favoured in the innermost regions of dark clouds, where the temperature is <20 K and the number density of molecular hydrogen exceeds a few × 104 cm−3. In this work, we estimate the size of the depleted region by studying the Infrared Dark Cloud (IRDC) G351.77−0.51. Continuum observations performed with the Herschel Space Observatory and the LArge APEX BOlometer CAmera, together with APEX C18O and C17O J = 2→1 line observations, allowed us to recover the large-scale beam- and line-of-sight-averaged depletion map of the cloud. We built a simple model to investigate the depletion in the inner regions of the clumps in the filament and the filament itself. The model suggests that the depletion radius ranges from 0.02 to 0.15 pc, comparable with the typical filament width (i.e. ∼0.1 pc). At these radii, the number density of H2 reaches values between 0.2 and 5.5 × 105 cm−3. These results provide information on the approximate spatial scales on which different chemical processes operate in high-mass star-forming regions and also suggest caution when using CO for kinematical studies in IRDCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.