Abstract
Let $X$ be an abstract not necessarily compact orientable CR manifold of dimension $2n-1$, $n\geqslant2$. Let $\Box^{(q)}_{b}$ be the Gaffney extension of Kohn Laplacian for $(0,q)$-forms. We show that the spectral function of $\Box^{(q)}_b$ admits a full asymptotic expansion on the non-degenerate part of the Levi form. As a corollary, we deduce that if $X$ is compact and the Levi form is non-degenerate of constant signature on $X$, then the spectrum of $\Box^{(q)}_b$ in $]0,\infty[$ consists of point eigenvalues of finite multiplicity. Moreover, we show that a certain microlocal conjugation of the associated Szeg\"o kernel admits an asymptotic expansion under a local closed range condition. As applications, we establish the Szeg\"o kernel asymptotic expansions on some weakly pseudoconvex CR manifolds and on CR manifolds with transversal CR $S^1$ actions. By using these asymptotics, we establish some local embedding theorems on CR manifolds and we give an analytic proof of a theorem of Lempert asserting that a compact strictly pseudoconvex CR manifold of dimension three with a transversal CR $S^1$ action can be CR embedded into $\mathbb{C}^N$, for some $N\in\mathbb N$.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have