Abstract
We give an answer to a question posed in Amorim et al. (ESAIM Math Model Numer Anal 49(1):19–37, 2015), which can loosely speaking, be formulated as follows: consider a family of continuity equations where the velocity depends on the solution via the convolution by a regular kernel. In the singular limit where the convolution kernel is replaced by a Dirac delta, one formally recovers a conservation law. Can we rigorously justify this formal limit? We exhibit counterexamples showing that, despite numerical evidence suggesting a positive answer, one does not in general have convergence of the solutions. We also show that the answer is positive if we consider viscous perturbations of the nonlocal equations. In this case, in the singular local limit the solutions converge to the solution of the viscous conservation law.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.