Abstract
Consider a nonlocal conservation law where the flux function depends on the convolution of the solution with a given kernel. In the singular local limit obtained by letting the convolution kernel converge to the Dirac delta one formally recovers a conservation law. However, recent counter-examples show that in general the solutions of the nonlocal equations do not converge to a solution of the conservation law. In this work we focus on nonlocal conservation laws modeling vehicular traffic: in this case, the convolution kernel is anisotropic. We show that, under fairly general assumptions on the (anisotropic) convolution kernel, the nonlocal-to-local limit can be rigorously justified provided the initial datum satisfies a one-sided Lipschitz condition and is bounded away from 0. We also exhibit a counter-example showing that, if the initial datum attains the value 0, then there are severe obstructions to a convergence proof.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.