Abstract

Abstract. The aerosol time-of-flight mass spectrometer (ATOFMS) provides size-resolved information on the chemical composition of single particles with high time resolution. Within SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies), continuous ATOFMS measurements of ambient particles were made simultaneously at two urban locations: urban background (UB) site and roadside (RS) site in the city of Barcelona (Spain) from 17 September to 18 October 2010. Two different instrumental configurations were used: ATOFMS (TSI 3800) with a converging nozzle inlet (high efficiency at about 800–2000 nm) at the UB site and ATOFMS (TSI 3800-100) with an aerodynamic lens inlet (high efficiency at about 300–700 nm) at the RS site. This is the first time, to our knowledge, that two ATOFMS instruments have been deployed in the same field study. The different instrument configurations had an impact on the observed particle types at the two sites. Nevertheless, 10 particle types were detected at both locations, including local and regional elemental carbon (22.7–58.9 % of total particles), fresh and aged sea salt (1.0–14.6 %), local and regional nitrate-containing aerosols (3–11.6 %), local lead-containing metallic particles (0.1–0.2 %), and transported Fe-nitrate particles (0.8–2.5 %). The ATOFMS at the UB also characterized four particle types: calcium-containing dust (0.9 %), Saharan dust (1.3 %), vanadium-containing particles (0.9 %), and vegetative debris (1.7 %). By contrast, the high statistical counts of fine particles detected at the RS allowed identification of eight particle types. Four of these contained organic nitrogen of primary and secondary origin, which highlights the complex nature of the sources and processes that contribute to this aerosol chemical component. Aminium salts were found related to coarse sulfate-rich particle types, suggesting heterogeneous reaction mechanisms for their formation. The other four particle types mainly containing organic carbon were found spiking at different types of the day, also showing a complex single-particle mixing state relationship between organic carbon and nitrate. This ATOFMS study clearly shows that the composition of atmospheric fine particles in Barcelona, and likely other Mediterranean urban areas, is complex, with a wide range of local and regional sources combining with chemical processing to produce at least 22 different particle types exhibiting different temporal behaviour. The advantage of using two ATOFMS instruments is also demonstrated, with the nozzle-skimmer configuration enabling detection of coarse dust particles and the aerodynamic lens configuration allowing better identification of particles rich in organic carbon and amines. Overall, we find that organic nitrogen is a considerable fraction of the single particles detected, especially at the traffic-dominated RS site. Further studies are needed, especially at high time resolution, to better understand the sources and properties of particulate organic nitrogen.

Highlights

  • A substantial number of studies have shown a relationship between measures of particulate air pollution and a variety of adverse health indicators (WHO, 2004)

  • The aerosol time-of-flight mass spectrometer (ATOFMS) has often reported a number of particle types, which at times are difficult to associate with a specific aerosol source (Pastor et al, 2003; Dall’Osto and Harrison, 2006, 2012)

  • The ATOFMS deployed at the RS site was equipped with an aerodynamic lens inlet system, allowing characterization of primary traffic aerosols as well as other primary and secondary aerosols affecting this heavily urbanized area of Barcelona

Read more

Summary

Introduction

A substantial number of studies have shown a relationship between measures of particulate air pollution and a variety of adverse health indicators (WHO, 2004). The aerosol time-offlight mass spectrometer (ATOFMS) has been used in many previous field studies to determine the chemical constituents of atmospheric aerosols (Pratt and Prather, 2012) It can identify both refractory and non-refractory species in single particles and can provide size-resolved information on particle sources and atmospheric processing at high time resolution (Prather and Pratt, 2012; Laskin et al, 2012). The ATOFMS has been used in a number of recent field studies in urban areas of Europe (Dall’Osto and Harrison, 2012; Healy et al, 2013) to identify and characterize particles from a diverse range of anthropogenic sources including traffic, solid fuel burning, industry, soil and road dust, marine aerosol, and secondary aerosol formation processes. The ATOFMS has often reported a number of particle types, which at times are difficult to associate with a specific aerosol source (Pastor et al, 2003; Dall’Osto and Harrison, 2006, 2012)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call