Abstract

The uncertainty arising from high levels of solar photovoltaic (PV) penetration can have a substantial impact on power system operation. Therefore, there is a need to develop models capable of representing PV generation in a rigorous manner. This paper introduces a novel transformation-based methodology to generate stochastic solar area power forecast scenarios; easy to apply to new locations. We present a simulation study comparing day-ahead solar forecast errors covering regions with different geographical sizes, total installed capacities, and climatic characteristics. The results show that our model can capture the spatio-temporal properties and match the long-term statistical properties of actual data. Hence, it can be used to characterize the PV input uncertainty in power system studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call