Abstract

AbstractAn analysis of amplitudes of refraction records of some shallow refraction profiles shot primarily for detailing the near‐surface structure in a granitic terrain has yielded information on refractor properties: reduced amplitudes are plotted on amplitude‐distance graphs. The negative power n to which distance should be raised to represent (elastic) amplitude decay with respect to distance due to spreading of the critically refracted wave involved is examined. Computed values of this “spreading index”n are close to n = 2 as predicted by the theory.With this value of n, amplitude data are processed to determine residual attenuation attributable to elastic absorption in the bedrock. A graphical approach for this purpose from comparison of amplitude‐distance graphs with the plots of amplitude decay due to spreading which is applicable to flat and horizontal refractor situations is suggested. Assuming residual attenuation to represent absorption in the granite bedrock, the computed coefficients of absorption, which vary from 0.5 to 3.90 km−1 for a frequency of 50 Hz, are obtained.From amplitude graphs of reversed profiles it is shown that the amplitude differences plot bears a relation to lateral velocity changes in the refractor. From comparison of practical amplitude decay graphs with those computed for different subsurface models, it appears possible to detect fractured rock occurrences in the refractor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.