Abstract

AbstractThe problem of western boundary current separation is investigated using a barotropic vorticity model. Specifically, a boundary current flowing poleward along a boundary containing a cape is considered. The meridional gradient of the Coriolis parameter (the β effect), the strength of dissipation, and the geometry of the cape are varied. It is found that 1) all instances of flow separation are coincident with the presence of a flow deceleration, 2) an increase in the strength of the β effect is able to suppress flow separation, and 3) increasing coastline curvature can overcome the suppressive β effect and induce separation. These results are supported by integrated vorticity budgets, which attribute the acceleration of the boundary current to the β effect and changes in flow curvature. The transition to unsteady final model states is found to have no effect upon the qualitative nature of these conclusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.