Abstract

We study a Crank–Nicolson in time, finite element in space, numerical scheme for a Bardina regularization of the barotropic vorticity (BV) model. We derive the regularized model from the simplified Bardina model in primitive variables, present a numerical algorithm for it, and prove the algorithm is unconditionally stable with respect to the timestep size and optimally convergent in both space and time. Numerical experiments are provided that verify the theoretical convergence rates, and also that test the model/scheme on a benchmark double-gyre wind forcing experiment. For the latter test, we find the proposed model/scheme gives a good coarse mesh approximation to the highly resolved direct numerical simulation of the BV model, and compares favorably to related regularization model results. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1492–1514, 2015

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call