Abstract

With the increase in the computing power and the advent of supercomputers, the approximation of evolution equations on large intervals of time is emerging as a new type of numerical problem. In this article we consider the approximation of evolution equations on large intervals of time when the space discretization is accomplished by finite elements. The algorithm that we propose, called the nonlinear Galerkin method, stems from the theory of dynamical systems and amounts to some approximation of the attractor in the discrete (finite elements) space. Essential here is the utilization of incremental unknown which is accomplished in finite elements by using hierarchical bases. Beside a detailed description of the algorithm, the article includes some technical results on finite elements spaces, and a full study of the stability and convergence of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.