Abstract

The present paper is concerned with the semilocal convergence problems of Halley's method for solving nonlinear operator equation in Banach space. Under some so-called majorant conditions, a new semilocal convergence analysis for Halley's method is presented. This analysis enables us to drop out the assumption of existence of a second root for the majorizing function, but still guarantee Q-cubic convergence rate. Moreover, a new error estimate based on a directional derivative of the twice derivative of the majorizing function is also obtained. This analysis also allows us to obtain two important special cases about the convergence results based on the premises of Kantorovich and Smale types.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.