Abstract

In order to accommodate general initial data, an appropriately relaxed notion of renormalized Lagrangian solutions for the Semi-Geostrophic system in physical space is introduced. This is shown to be consistent with previous notions, generalizing them. A weak stability result is obtained first, followed by a general existence result whose proof employs said stability and approximating solutions with regular initial data. The renormalization property ensures the return from physical to dual space; as consequences we get conservation of Hamiltonian energy and some weak time-regularity of solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.