Abstract
Insight into the role of triaxiality in mode-I, plane strain resistance curves of a representative ductile metal has been gained. Growth of a macroscopic crack is simulated as per modified boundary layer formulation for a range of constraint parameter with the fracture process represented by a triaxiality dependent cohesive model. In contrast to the predictions by a fixed cohesive law, the study shows that by including the effect of triaxiality on the work of separation, the stick-slip nature or the non-uniformity in the rate of the crack growth and its manifestations on the plastic wake and fracture surface can be predicted that are closer to trends observed in experimental literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.