Abstract
Radial basis function-generated finite difference (RBF-FD) approximations generalize classical grid-based finite differences (FD) from lattice-based to scattered node layouts. This greatly increases the geometric flexibility of the discretizations and makes it easier to carry out local refinement in critical areas. Many different types of radial functions have been considered in this RBF-FD context. In this study, we find that (i) polyharmonic splines (PHS) in conjunction with supplementary polynomials provide a very simple way to defeat stagnation (also known as saturation) error and (ii) give particularly good accuracy for the tasks of interpolation and derivative approximations without the hassle of determining a shape parameter. In follow-up studies, we will focus on how to best use these hybrid RBF polynomial bases for FD approximations in the contexts of solving elliptic and hyperbolic type PDEs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.