Abstract

AbstractIt is well known that preferential sputtering with binary alloys correlates significantly with chemical binding, but only the sense and not the magnitude of the effect can be understood in these terms. It is argued here that the correlation is, in fact, an indirect one due to bombardment‐induced Gibbsian (or similar) segregation. The preferentially removed component is characterized by a composition profile consisting of a one atom‐layer‐thick spike at the surface; this is the depth from which most sputtered atoms originated so the spike must have near‐bulk composition. There is then a severely depleted subsurface region in accordance with Gibbsian segregation equilibrium (or an equivalent effect) and a final return to bulk composition. The reason for the marked correlation with chemical binding is that segregation is governed significantly more often by binding than by the alternatives of size, surface chemistry, an interstitial flux, or long‐range ordering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.