Abstract

We consider a stochastic mathematical program with equilibrium constraints (SMPEC) and show that, under certain assumptions, global optima and stationary solutions are robust with respect to changes in the underlying probability distribution. In particular, the discretization scheme sample average approximation (SAA), which is convergent for both global optima and stationary solutions, can be combined with the robustness results to motivate the use of SMPECs in practice. We then study two new and natural extensions of the SMPEC model. First, we establish the robustness of global optima and stationary solutions to an SMPEC model where the upper-level objective is the risk measure known as conditional value-at-risk (CVaR). Second, we analyze a multiobjective SMPEC model, establishing the robustness of weakly Pareto optimal and weakly Pareto stationary solutions. In the accompanying paper (Cromvik and Patriksson, Part 2, J. Optim. Theory Appl., 2010, to appear) we present applications of these results to robust traffic network design and robust intensity modulated radiation therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.