Abstract

In this article, we discuss the sample average approximation (SAA) method applied to a class of stochastic mathematical programs with variational (equilibrium) constraints. To this end, we briefly investigate the structure of both–the lower level equilibrium solution and objective integrand. We show almost sure convergence of optimal values, optimal solutions (both local and global) and generalized Karush–Kuhn–Tucker points of the SAA program to their true counterparts. We also study uniform exponential convergence of the sample average approximations, and as a consequence derive estimates of the sample size required to solve the true problem with a given accuracy. Finally, we present some preliminary numerical test results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.