Abstract

We consider smooth electrovac spacetimes which represent either (A) an asymptotically flat, stationary black hole or (B) a cosmological spacetime with a compact Cauchy horizon ruled by closed null geodesics. The black hole event horizon or, respectively, the compact Cauchy horizon of these spacetimes is assumed to be a smooth null hypersurface which is non-degenerate in the sense that its null geodesic generators are geodesically incomplete in one direction. In both cases, it is shown that there exists a Killing vector field in a one-sided neighborhood of the horizon which is normal to the horizon. We thereby generalize theorems of Hawking (for case (A)) and Isenberg and Moncrief (for case (B)) to the non-analytic case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.