Abstract
We prove that any compact Cauchy horizon with constant non-zero surface gravity in a smooth vacuum spacetime is a smooth Killing horizon. The novelty here is that the Killing vector field is shown to exist on both sides of the horizon. This generalises classical results by Moncrief and Isenberg, by dropping the assumption that the metric is analytic. In previous work by Rácz and the author, the Killing vector field was constructed on the globally hyperbolic side of the horizon. In this paper, we prove a new unique continuation theorem for wave equations through smooth compact lightlike (characteristic) hypersurfaces which allows us to extend the Killing vector field beyond the horizon. The main ingredient in the proof of this theorem is a novel Carleman type estimate. Using a well-known construction, our result applies in particular to smooth stationary asymptotically flat vacuum black hole spacetimes with event horizons with constant non-zero surface gravity. As a special case, we therefore recover Hawking's local rigidity theorem for such black holes, which was recently proven by Alexakis-Ionescu-Klainerman using a different Carleman type estimate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.