Abstract
Our purpose is to study the rigidity of complete hypersurfaces immersed into a Riemannian space form. In this setting, first we use a classical characterization of the Euclidean sphere \(\mathbb S ^{n+1}\) due to Obata (J Math Soc Jpn 14:333–340, 1962) in order to prove that a closed orientable hypersurface \(\Sigma ^n\) immersed with null second-order mean curvature in \(\mathbb S ^{n+1}\) must be isometric to a totally geodesic sphere \(\mathbb S ^{n}\), provided that its Gauss mapping is contained in a closed hemisphere. Furthermore, as suitable applications of a maximum principle at the infinity for complete noncompact Riemannian manifolds due to Yau (Indiana Univ Math J 25:659–670, 1976), we establish new characterizations of totally geodesic hypersurfaces in the Euclidean and hyperbolic spaces. We also obtain a lower estimate of the index of minimum relative nullity concerning complete noncompact hypersurfaces immersed in such ambient spaces.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have