Abstract
Abstract A Riesz structure on a lattice ordered abelian group G is a real vector space structure where the product of a positive element of G and a positive real is positive. In this paper we show that for every cardinal k there is a totally ordered abelian group with at least k Riesz structures, all of them isomorphic. Moreover two Riesz structures on the same totally ordered group are partially isomorphic in the sense of model theory. Further, as a main result, we build two nonisomorphic Riesz structures on the same l-group with strong unit. This gives a solution to a problem posed by Conrad in 1975. Finally we apply the main result to MV-algebras and Riesz MV-algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.