Abstract

The effect of infectious diseases cannot be overemphasised. The continuing surfacing of the infectious diseases gives the stakeholders a great concern. In this paper, the nature of the spread of Ebola virus outbreak in West Africa in 2014 is studied. We develop a model that analyses the spread of infectious diseases, and the reproduction number is determined by using the next generation matrix method. Finally, the effects of treatment of the infected individuals and vaccination of the susceptible population as the control strategies are looked into. The optimal control system showed that the combination of the two strategies proved more effective.

Highlights

  • Infectious diseases are deadly diseases of humans and animals which account for about one-tenth of the causes of deaths worldwide

  • The authors in [2] modified the S-E-I-R model and developed an S-E-I-H-F-R model to study the spread and transmission of Ebola virus to include those at hospital and funeral but assumed homogeneous population, which according to the authors was too simple, which may not have effects in countries where the structure of the community favours infection in households, and recovered individuals were not returned to the population

  • The analysis of epidemiological data of the 2014 Ebola virus disease outbreak in Nigeria was done by dividing the population into five categories: susceptible; exposed; infectious and symptomatic individuals; hospitalised individuals; and those individuals separated from isolation centre after recovery or those that died as a result of the disease

Read more

Summary

Introduction

Infectious diseases are deadly diseases of humans and animals which account for about one-tenth of the causes of deaths worldwide. In 2013, [4] studied the Chukwu et al Advances in Difference Equations (2020) 2020:610 global stability conditions of two models having relapse and bilinear standard incidence rate He discovered that the disease produced deaths in the infectious class. The control strategies of using treated bed-nets, medication and insecticides spray have great impact on the control of malaria disease [14] To this end, the main aim of this work is to model the spread of Ebola virus disease in West Africa with the incubation period by applying mathematical models of the systems of ordinary differential equations that describe the dynamics of the outbreak of 2014 Ebola virus in some parts of West Africa, to determine the reproduction number and to better understand the dynamics and find optimal control strategies to reduce the effect of the disease spread. We considered two control strategies: treatment of the infected individuals and vaccination of the susceptible

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.