Abstract
Abstract The relationship between gravity wave momentum fluxes and local wind speed is investigated for oceanic regions at high southern latitudes during austral spring. The motivation is to better describe the gravity wave field by identifying a simple relationship between gravity waves and the large-scale flow. The tools used to describe the gravity waves are probability density functions of the gravity wave momentum fluxes. Three independent datasets covering high latitudes in the Southern Hemisphere springtime are analyzed: simulations with a mesoscale model, analyses from the European Centre for Medium-Range Weather Forecasts, and observations from superpressure balloons of the Concordiasi campaign in 2010. A remarkably robust relation is found, with stronger momentum fluxes much more likely in regions of strong winds. The tails of the probability density functions are well described as lognormal. The median momentum flux increases linearly with background wind speed: for winds stronger than 50 m s−1, the median gravity wave momentum fluxes are about 4 times larger than for winds weaker than 10 m s−1. From model output, this relation is found to be relevant from the tropopause to the midstratosphere at least. The flux dependence on wind speed shows a somewhat steeper slope at higher altitude. Several different processes contribute to this relation, involving both the distribution of sources and the effects of propagation and filtering. It is argued that the location of tropospheric sources is the main contributor in the upper troposphere and lowermost stratosphere and that lateral propagation into regions of strong winds becomes increasingly important above.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.