Abstract

[1] In this work absolute values of gravity wave (GW) momentum flux are derived from global temperature measurements by the satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Momentum fluxes in the stratosphere are derived for both instruments and for SABER in the whole mesosphere. The large-scale atmospheric background state is removed by a two-dimensional Fourier decomposition in longitude and time, covering even planetary-scale waves with periods as short as 1–2 days. Therefore, it is possible to provide global distributions of GW momentum flux from observations for the first time in the mesosphere. Seasonal as well as longer-term variations of the global momentum flux distribution are discussed. GWs likely contribute significantly to the equatorward tilt of the polar night jet and to the poleward tilt of the summertime mesospheric jet. Our results suggest that GWs can undergo large latitudinal shifts while propagating upward. In particular, GWs generated by deep convection in the subtropical monsoon regions probably contribute significantly to the mesospheric summertime wind reversal at mid- and high latitudes. Variations in the GW longitudinal distribution caused by those convectively generated GWs are still observed in the mesosphere and could be important for the generation of the quasi two-day wave. Indications for quasi-biennial oscillation (QBO) induced variations of GW momentum flux are found in the subtropics. Also variations at time scales of about one 11-year solar cycle are observed and might indicate a negative correlation between solar flux and GW momentum flux.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.