Abstract

High head Francis runners are subject to pressure pulsations caused by rotor stator interaction. To ensure safe operation of such turbines, it is important to be able to predict these pulsations. For turbine manufacturers it is often a dilemma whether to perform very advanced and time consuming CFD calculations or to rely on simpler calculations to save development time. This paper tries to evaluate simplifications of the CFD model while still capturing the RSI phenomena and ensuring that the calculation does not underpredict the pressure amplitudes. The effects which turbulence modeling, wall friction, viscosity and mesh have on the pressure amplitudes will be investigated along with time savings with each simplification. The hypothesis is that rotor stator interaction is manly driven by inviscid flow and can therefore be modeled by the Euler equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.