Abstract
The Refined Instrumental Variable method for discrete-time systems (RIV) and its variant for continuous-time systems (RIVC) are popular methods for the identification of linear systems in open-loop. The continuous-time equivalent of the transfer function estimate given by the RIV method is commonly used as an initialization point for the RIVC estimator. In this paper, we prove that these estimators share the same converging points for finite sample size when the continuous-time model has relative degree zero or one. This relation does not hold for higher relative degrees. Then, we propose a modification of the RIV method whose continuous-time equivalent is equal to the RIVC estimator for any non-negative relative degree. The implications of the theoretical results are illustrated via a simulation example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.