Abstract

Geotherm families in which surface heat flow is the principal independent variable have been constructed for continental and oceanic lithospheres. The continental model is characterized by geotherms in which surface heat flow is in equilibrium with heat flowing into the lithosphere at its base plus heat generated by radioactive decay within the lithosphere. The model accommodates the regional variation of the surface heat flow with proportional variations in the radioactivity of the surficial enriched zone and in the deeper heat flow. The proportionality is dictated by a new and general linear relationship between reduced heat flow and mean heat flow for a region ( q ∗ ≅ 0.6 q ̄ 0 ), which enables both q ∗ and the mean heat production of the enriched zone to be estimated from knowledge of the mean surface heat flow of a province. The oceanic model is characterized by the transient cooling of a semi-infinite medium with an initial temperature gradient and some near-surface radiogenic heat production. The model yields a heat flow in satisfactory agreement with observations in the oldest ocean basins. The depth at which both the oceanic and continental geotherms reach ~0.85 of the melting temperature is shown to be a consistent estimator of the depth to the top of the low-velocity channel, or the thickness of the high-velocity lid overlying the channel. We identify the lid as synonymous with the lithosphere, and produce a global map of lithospheric thickness based on the regional variation of surface heat flow. The lithosphere is less than 100 km thick over most of the globe, but thickens appreciably and becomes more viscous beneath the Precambrian shields and platforms, regions of low heat flow. These characteristics of shields are consistent with recently reported models of the driving mechanisms of the plate system, which require greater retarding forces beneath plates with large continental areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call