Abstract

The two-dimensional shallow water equations were formulated and numerically solved in an arbitrary curvilinear coordinate system, which offers a relatively high degree of flexibility in representing the natural flow domains with structured meshes. The model employs an efficient TVD-MacCormack scheme, which has second-order accuracy in both time and space. Refinements were made to enhance the model's accuracy and stability in computing the shallow wave dynamics in real-world scenarios, with irregular boundaries and uneven beds. In particular, advanced open boundary conditions have been proposed according to the method of characteristics, and rigorous mass conservation has been enforced during the computation at both the inner-domain and the boundaries. These refinements are necessary when modeling the flood inundation over a large area and the tidal oscillation in a macro-tidal estuary. The effectiveness of the refinements was verified by simulating the forced tidal resonance in an idealized condition and the Malpasset dam-break flood in the Reyran river valley. The application of the refined model in the study of tidal oscillations in the Severn Estuary and Bristol Channel can be found in the companion paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.