Abstract
For a graph G=(V,E) and a color set C, let f:E→C be an edge-coloring of G in which two adjacent edges may have the same color. Then, the graph G edge-colored by f is rainbow connected if every two vertices of G have a path in which all edges are assigned distinct colors. Chakraborty et al. defined the problem of determining whether the graph colored by a given edge-coloring is rainbow connected. Chen et al. introduced the vertex-coloring version of the problem as a variant, and we introduce the total-coloring version in this paper. We settle the precise computational complexities of all the three problems with regards to graph diameters, and also characterize these with regards to certain graph classes: cacti, outer planer and series-parallel graphs. We then give FPT algorithms for the three problems on general graphs when parameterized by the number of colors in C; our FPT algorithms imply that all the three problems can be solved in polynomial time for any graph with n vertices if |C|=O(logn).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.