Abstract

We study the light vector and axial-vector mesons. According to the hadrogenesis conjecture the nature of the two types of states is distinct. The axial-vector mesons are generated dynamically by coupled-channel interactions based on the chiral Lagrangian written down in terms of the Goldstone bosons and the light vector mesons. We propose a novel counting scheme that arises if the chiral Lagrangian is supplemented by constraints from large- N c QCD in the hadrogenesis conjecture. The counting scheme is successfully tested by a systematic study of the properties of vector mesons. The spectrum of light axial-vector mesons is derived relying on the leading order interaction of the Goldstone bosons with the vector mesons supplemented by phenomenological correction terms. The f 1 ( 1282 ) , b 1 ( 1230 ) , h 1 ( 1386 ) , a 1 ( 1230 ) and K 1 ( 1272 ) mesons are recovered as molecular states. Based on those results the one-loop contributions to the electromagnetic decay amplitudes of axial-vector molecules into pseudo-scalar or vector mesons are evaluated systematically. In order to arrive at gauge invariant results in a transparent manner we choose to represent the vector particles by anti-symmetric tensor fields. At present we restrict ourselves to loops where a vector and a pseudo-scalar meson couple to the axial-vector molecule. We argue that final and predictive results require further computations involving intermediate states with two vector mesons. The relevance of the latter is predicted by our counting rules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call