Abstract

Our model of the animal fatty acid synthetase describes a head-to-tail arrangement of two identical subunits and predicts the presence of two centers for fatty acid synthesis. Current experiments which support this conclusion were conducted using the following approach. The thioesterase component of chicken liver fatty acid synthetase was either inhibited using phenylmethanesulfonyl fluoride or diisopropyl fluorophosphate, or released from the synthetase by limited proteolysis with alpha-chymotrypsin, thus ensuring that the fatty acyl products remain bound to the enzyme. Employing such preparations, the amount of NADPH oxidized in the initial burst of fatty acid synthesis was determined by stopped flow techniques. Gas-liquid chromatography showed that C20:0 and C22:0 constituted 85% of the fatty acids formed de novo, a result that was confirmed using [14C]acetyl-CoA in the reaction. These data showed that 1.0 mol of fatty acyl-enzyme product was formed per mol of phosphopantetheine; in addition, the measured stoichiometry of NADPH oxidation was sufficient to account for de novo fatty acid synthesis. Altogether, these results indicate that the two sites for fatty acid synthesis are active and function simultaneously. They also indicate that the thioesterase plays a key role in determining the chain specificity of fatty acid synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.