Abstract
The quartic higher-derivative gravitational terms [Formula: see text] in the heterotic-superstring effective Lagrangian [Formula: see text], defined from the Riemann ten-tensor [Formula: see text], are expanded, after reduction to the conformally-flat physical D-space gij, in terms of the Ricci tensor Rij and scalar R. The resulting quadratic term [Formula: see text] is tachyon-free and agrees exactly with the prediction from global supersymmetry in the nonlinear realization of Volkov and Akulov of the flat-space, quadratic fermionic Lagrangian [Formula: see text] for a massless Dirac or Weyl spinor, only when D = 4, assuming the Einstein equation [Formula: see text] for the energy–momentum tensor. This proves that the heterotic superstring has to be reduced from ten to four dimensions if supersymmetry is to be correctly incorporated into the theory, and it rules out the bosonic string and type-II superstring, for which [Formula: see text] has the different a priori forms ±(R2-4RijRij) derived from [Formula: see text], which also contain tachyons (that seem to remain after the inclusion of a further contribution to [Formula: see text] from [Formula: see text]). The curvature of space–time introduces a mass into the Dirac equation, [Formula: see text], while quadratic, higher-derivative terms [Formula: see text] make an additional contribution to the Einstein equations, these two effects causing a difference between [Formula: see text] and [Formula: see text] on the one hand, and the predictions from [Formula: see text] and [Formula: see text] on the other. The quartic terms [Formula: see text] still possess some residual symmetry, however, enabling us to estimate the radius-squared of the internal six-dimensional space [Formula: see text] in units of the Regge slope-parameter α′ as B r ≈ 1.75, indicating that compactification occurs essentially at the Planck era, due to quantum mechanical processes, when the action evaluated within the causal horizon is S h ~ 1. This symmetry is also discussed with regard to the zero-action hypothesis. The dimensionality D = 4 of space–time is rederived from the Wheeler–DeWitt equation (Schrödinger equation) of quantum cosmology in the mini-superspace approximation, by demanding invariance and positive-semi-definiteness of the potential [Formula: see text] under Wick rotation of the time coordinate, which also determines the three-space to be flat, so that K = 0, and again involves the nonlinearity of gravitation.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have