Abstract

We analyse a proximal point method for equilibrium problems in Hilbert spaces, improving upon previously known convergence results. We prove global weak convergence of the generated sequence to a solution of the problem, assuming existence of solutions and rather mild monotonicity properties of the bifunction which defines the equilibrium problem, and we establish existence of solutions of the proximal subproblems. We also present a new reformulation of equilibrium problems as variational inequalities ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.