Abstract
In this paper, we study a class of general monotone equilibrium problems in a real Hilbert space which involves a monotone differentiable bifunction. For such a bifunction, a skew-symmetric type property with respect to the partial gradients is established. We suggest to solve this class of equilibrium problems with the modified combined relaxation method involving an auxiliary procedure. We prove the existence and uniqueness of the solution to the auxiliary variational inequality in the auxiliary procedure. Further, we prove also the weak convergence of the modified combined relaxation method by virtue of the monotonicity and the skew-symmetric type property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.